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Iterative blind deconvol~tion and its application in characterization of 
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Eddy current techniques are widely used to detect and characterize the defects in 

steam generator tubes in nuclear power plants. Although defect characteriza~on is crucial 

for the successful inspection of defects, it is often difficult due to due to the finite size of 

the probes used for inspection. A feasible solution is to model the defect data as the 

convolution o~ the defect surface profile and the probe response. Therefore deconvolution 

algorithms can be used to remove the effect of probe on the signal. 

This thesis presents a method using iterative blind deconvolution algorithm based on 

the Richardson - Lucy algorithm to address the defect characterization problem. Another 

iterative blind deconvolution method based on Wiener filtering is used to compare the 

performance. A preprocessing algorithm is introduced to remove the noise and thus 

enhance the performance. Two new convergence criterions are proposed to solve the 

convergence problem. Different types of initial estimate of the PSF are used and their 

impacts on the performance are compared. The results of applying this method to the 

synthetic data, the calibration data and the field data are presented. 
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ABSTRACT 

Eddy current techniques are widely used to detect and characterize the defects in 

steam generator tubes in nuclear power plants. Although defect characterization is crucial 

for the successful inspection of steam generator tubes, it is often rendered difficulty due 

to the artifacts introduced by the finite size of the probes used for inspection. A feasible 

solution is to model the data as a convolution of the defect surface profile and the probe 

response and use deconvolution algorithms to remove the effect of probe on the signal. 

This thesis presents study of a iterative blind deconvolution t~chnique based on the 

Richardson - Lucy algorithm to address the defect characterization problem. The 

performance is compared with results obtained using iterative method based on Wiener 

filtering. A preprocessing algorithm is introduced to remove the noise and _thus enhance 

the performance. Two new convergence criterions are proposed to enhance the solution. 

Different types of initial estimate of the PSF are used and their impact on the 

performance is studied. Results of applying this metho~ to synthetic data, calibration data 

and field data are presented. 
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CHAPTER 1. INTRODUCTION 

1.1 Problem Statement 

Nondestructive evaluation (NDE) is the inspection and evaluation of a test material 

for defects without causing any damage to the properties and serviceability of the 

specimen. NDE techniques are widely used in a variety of industrial applications, 

especially in the are~ of detecting and characterizing flaws in engineering structures such 

as airplane wheels and engines, bridges, gas pipes, railroads, nuclear power plants and so 

on. Defects, which are mostly cracks caused by intensive workload or extreme 

environmental conditions, can cause fatal failures with disastrous consequences. Timely 

and successful detection of such defects can certainly lead to decreasing the possibility of 

failure and increasing the quality of service. 

A variety of nondestructive testing (NDT) methods· including electromagnetics, 

ultrasonics, radiography, and thermography, have evolved to handle a large variety of 

applications. A typical NDT system consists of three components: a specimen under 

inspection, an energy source that interacts with the specimen, and a receiving transducer 

to pick up the response of energy - material interaction. For example, acoustic waves are 

used in ultrasonic methods of testing, and X - rays are used as the source of energy in 

radiographic techniques. A typical NDT signal consists of the response of energy -

material interaction: For instance, examples of electromagnetic NDT signals include 

magnetic flux leakage, potential drop, and impedance changes of an eddy current coil. 
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Such NDT signals can be further analyzed using different signal/image processing 

techniques to obtain useful information, such as location, shape, and depth, of the defects. 

One of the most commonly used electromagnetic inspection techniques is eddy 

current method that is widely used in aerospace, automotive, marine and manufacturing 

applications for detection and characterization of flaws in conducting, ferromagnetic and 

non - ferromagnetic materials. This method is based on measuring the changes of the 

probe coil impedance as the probe scans the surface of a conducting specimen. These 

changes may indicate either the presence of a defect on the specimen, or material 

property variation of the specimen. 

One of the major applications of eddy current method is .in the inspection of the 

steam generator tubes in nuclear power plants [ 1]. In this application, the overall eddy 

current testing system can be roughly divided into two parts: the measurement system 

that is used to collect eddy current NDT signals, and data analysis system that is used to 

extract useful information about the defect. The main objective of signal/image 

. processing algorithms used in data analysis system is defect characterization. Defect 

characterization refers to determining the defect parameters such as shape, length, width, 

and depth from the information contained in eddy current signals. Defect 

characterization can be further decomposed into 2 parts: 1) estimating the surface profile 

of the defect; 2) reconstruct the depth profile. Together a three - dimensional defect 

reconstruction can be performed. 

In general it is seen that eddy current signals extend beyond the surface extent of a 

defect. In step ( 1) this problem can be addressed by assuming the signal is a convolution 
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of the defect footprint (the surface profile of the defect) and the probe response. 

Therefore, deconvolution algorithms [2] can be applied to remove the effects of the probe 

on the signal and give a better estimate of the true defect dimensions. An additional 

advantage of deconvolution is that it can separate out two or more flaws in close 

proximity, thus better characterizing the true nature of the flaw. 

Most deconvolution algorithms require a priori knowledge of the probe response or 

the kernel function. This parameter, though vital for improving the performance of the 

algorithm, is often hard to obtain. A simple approach to deconvolution is based on the use 

of Wiener filters [3], where the form of the kernel is assumed. Blind deconvolution 

algorithms [2, 4] are better suited in applications where the form of the kernel function is 

unknown and must be estimated from the data at hand. The major advantage of blind 

deconvolution algorithms over other deconvolution algorithms is that the probe response 

and defect footprint can be estimated sequentially from the defect signals. Another 

advantage is that additional constraints can be easily incorporated into the deconvolution 

process, thus resulting in improved characterization results. 

1.2 Scope of Thesis 

This thesis deals with the problem of defect characterization using blind 

deconvolution techniques. The technique discussed in this thesis is based on one of the 

commonly used blind deconvolution algorithm, Richardson - Lucy algorithm [5, 6]. 

Although blind deconvolution techniques are often used in image restoration 

applications, it can also be used to address the defect characterization problem due to 
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similarity of the image degradation system and the eddy current inspection system. The 

Richardson - Lucy algorithm was derived from Bayes's theorem, and it models the input 

image, kernel function" and observed image as probability - frequency function. Due to 

its implementation of maximum likelihood and ability to reconstruct input images with 

high quality even under noisy conditions, it has been widely used in a variety of 

problems. 

This thesis is organized as follows: 

Chapter 2 introduces the different types of nondestructive testing techniques and 

gives a brief description of the theory of the eddy current method. This chapter also 

includes the description of the measurement system used to inspect the steam generator 

tubes in nuclear power plants. In addition, a description of data analysis system including 

data preprocessing and signal enhancement and the challenge of obtaining better 

characterization results is included. 

Chapter 3 gives an overview of two different types of blind deconvolution 

algorithms: parametric and non - parametric. Several commonly used blind 

deconvolution algorithms and their advantages and disadvantages are discussed in this 

chapter. 

Chapter 4 first gives a detailed review of the blind deconvolution method based on 

Richardson- Lucy algorithm along with the implementation of the eddy current signals 

is explained. Modifications that are made to make the algorithm more suitable for dealing 

with the ~ddy current signals are also discussed. 
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Chapter 5 shows the results of Richardson - Lucy based blind deconvolution method 

applied to the eddy current signals obtained from the steam generator tubes in nuclear 

power plants. Both calibration data and field data are used to evaluate the performance of 

the algorithm. Also included in this chapter are some concluding remarks and 

identification of areas for future research. 
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CHAPTER 2. EDDY CURRENT NDE 

2.1 Introduction 

A typical NOT system is shown in Figure 2.1[7]. The receiving transducer is used to 

pick up the interaction between the energy source and the test specimen and thus generate 

an output signal. The output signal is then processed and passed through an inverse block 

that analyzes the signal measured by the receiving transducer. In the last step a defect 

characterization technique is used to predict an estimate of the defect profile. 

Energy 
Source 

Test 
Specimen 

Excitation 

,___Transducer 

~ Receiving 
"----Transducer 

Defect Profile 

Defect 
Characterization 

Inversion 
Interpretation 

Signal 
Processing 

Figure 2.1 A general NDT system 



www.manaraa.com

7 

2.2 General Methods of Nondestructive Testing 

Currently a variety of nondestructive testing methods are in existence and they are 

classified according to the types of probing energy source used. Three of the most 

commonly used NDT methods are ultrasonic, radiographic, and eddy current methods 

which are described next. 

2.2.1 Ultrasonic NDT 

The ultrasonic method is probably one of the oldest NDT methods. It belongs to the 

family of acoustic nondestructive inspection techniques which utilize characteristics of 

the propagating stress waves [8]. These waves are generally in the ultrasonic range, i:e., 

having frequencies greater than 20 kHz. Hence, it is calJed the ultrasonic NDT. This 

method needs to inject a burst of energy in ultrasonic frequency range into the test 

specimen through a transducer. The injected ultrasonic wave passes through the specimen 

and interacts with the material. The return echo is picked up by a receiving transducer 

and this echo carries information about the property of the material along the path the 

ultrasonic wave travels. 

A general ultrasonic testing system is shown is Figure 2.2 [9]. A pulse generator 

generates the electrical pulses, a transducer converts electrical pulses into mechanical 

waves, a receiving transducer collects the echoes from the test specimen, and a display 

and analysis system. Depending on the mode of operation, either one or two transducers 

can be used [10]. 
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Specimen 

8 

Ultrasonic 
Transmitter 

Transducer 

Receiver 

Figure 2.2 A general ultrasonic inspection system 

Display and 
Analysis 

There are three typical modes of displaying the data, namely, A- scan, B- scan and 

C - scan. In A - scan mode, the echoes of the output signal is recorded as a one -

dimensional function of time for a given position of the transducer and provides 

in!ormation of the depth of the defect. The B - scan signal consists of a series of A - scan 

signals obtained with the transducer scanning along the length of the test specimen 

thereby providing a cross - sectional view of the defect shape. The C - scan consists of a 

set of B - scan signals, in which the transducer performs a 2 - D scan of the surface of 

the test specimen, and the peak value of the· A - scan at each position is displayed. The 

display and analysis system implements post- processing techniques for extracting the 
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useful information to either determine the size and location of the flaw or measure the 

properties of the material. 

2.2.2 Radiographic NDT 

Radiography method was the frrst NDT method used for inspecting samples for 

internal defects. It is widely used for finding internal, nonplanar defects such as porosity 

and voids. But planar defects can also be located with radiography if properly oriented. It 

is also suitable for detecting changes in material composition, for thickness measurement, 

and for locating unwanted or defective components that can not be seen in assembled 

parts. 

Radiographic NOT method is based on propagation of energy from a source through 

an object and analysis of the energy pattern received on the opposite side. Figure 2.3 

shows a typical radiographic inspection system. The radiation source used can be X -

rays or gamma rays which emit energy that travels in straight lines and penetrates the test 

specimen. Both sources are electromagnetic radiation of high frequencies with 

wavelength of the order of 10-7 to 10-11 ems. Gamma rays are generated by transition of a 

radioactive nuclei from a high energy level to a more stable lower energy level, and x -

rays are produced when high- speed electrons strike a suitable target [8]. Because of the 

high energy level the radiation has high penetrating power and can travel through most 

materials. The intensity of the beam of energy transmitted through the object is reduced 

according to the thickness traversed by the beam and can be expressed as: 

I =I e-~tr 
I 0 (2.1) 
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Defect 

Defect image 

10 

Ill\\ 

!~\\ 
f·=: i \ : : 

Sources (gamma 
rays, x-rays) 

Specimen 

Figure 2.3 A general radiographic inspection system [8]. 

where t is the thickness of the material, I 0 and I, are the incident and transmitted energies 

respectively, and A. is the linear absorption coefficient dependent on the material 

properties. After the radiation energy has passed through the test specimen, it is recorded 

on a photographic film opposite the source and analyzed to determine the condition of the 

test specimen. 
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2.2.3 Electromagnetic NDT 

In electromagnetic NDT methods, the energy source is electric and magnetic fields. 

Some of the popular electromagnetic methods are potential drop, magnetostatic leakage 

field, and eddy current methods. The magnetic leakage field technique uses direct current 

as the excitation source, while the eddy current method uses a low frequ~ncy alternating 

current. The magnetic field is varied because of the variation of one or more properties 

such as magnetic permeability, electric permittivity or electric conductivity of the test 

specimen. Excitation current also has an impact on the generated magnetic field. The 

NDT technique used. in this thesis is based on the eddy current method. Eddy Current 

methods are one of the most popular nondestructive testing techniques and are widely 

used in the inspection of aircraft and nuclear power plants. The physical principles of this 

method are described in the following sections. 

2.3 Principle of Eddy Current Testing 

Eddy current methods are based on the principles of magnetic induction to 

interrogate the tested specimen [ 6, 11, 12, 13]. 

When a coil is excited by an alternating current, a primary magnetic field that is 

parallel to the coil's axis is generated. According to Faraday's laws, when this coil is 

brought close to a conductive specimen eddy current is induced in the specimen. Hence, a 

secondary f!lagnetic field is generated d~e to the presence of the induced eddy currents in 

the specimen. From Lenz' s law, the direction of the induced eddy current and the · 
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Figure 2.4 Principles of Eddy Current Testing [7] 

secondary magnetic field has the tendency to oppose the primary magnetic field. Figure 

2.4 illustrates the principles of eddy current testing. 

If the specimen is nonferromagnetic, the flux linkage of the primary field is 

decreased because the secondary field opposed the pnmary field. Since the self -

inductance of the coil is proportional to the flux linkage, the inductance of the coil is 

decreased. At the same time, the resistance of the coil is increased because the eddy 

current losses occurred in the specimen have to be compensated by the source of 

excitation. 

In the presence of a flaw or defect in the test specjmen, the distribution of the 

induced current is changed. The eddy current is reduced due to the presence of the 

discontinuity or inhomogeneity in the material. The change of induced eddy current 

results in the reduction of the changes of the inductance and resistance of the excitation 

coil. Figure 2.5 shows the changes of the inductance and resistance of the excitation coil 
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X 

A 

c 

A. Coil in the air. 
B. Coil over a nonferromagnetic specimen 

with a flaw or defect. 
C. Coil over a nonferromagnetic specimen 

without a flaw or defect. 

R 

Figure 2.5 Impedance plane trajectory of a coil over a nonferromagnetic specimen. 

in the presence and absence of a de~ect in the test specimen under assumption that the 

specimen is nonferromagnetic [ 11]. 

When the test specimen is ferromagnetic, the change of inductance of the excitation 

coil is different. Besides the reduction of the inductance of the coil due to the effect of the 

induced eddy current in the test specimen, the higher permeability of the material results 

in an increase in the inductance of the coil. Generally, the latter effect is stronger and, 

hence the net inductance is increased in the case of ferroma.gnetic specimen. The change 

in the resistance of the coil is the same as in the case of a nonferromagnetic specimen. 

Figure 2.6 [11] illustrates the changes of inductance and resistance of the excitation coil 

in the presence and absence of a defect in the ferromagnetic specimen. 
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X 

c 

A 

A. Coil in the air. 
B. Coil over a ferromagnetic specimen 

with a flaw or defect. 
C. Coil over a ferromagnetic specimen 

without a flaw or defect. 

R 

Figure 2.6 Impedance plane trajectory of a coil over a ferromagnetic specimen. 

2.4 Eddy Current Transducer 

Eddy current transducers can be divided into different classes according to coil 

configuration [ 11]: 

1. absolute eddy current transducers; 

2. differential eddy current transducers; 

3. absolute and differential eddy current array transducers; 

Absolute eddy current transducers usually consist of a single coil. When using 

absolute transducers, the absolute value of the impedance of the coil is measured directly 

instead of the change of the impedance. They are the simplest and most commonly used 

transducers. However a disadvantage in using absolute transducers is that small changes 

of the impedance due to a flaw are often superimposed on the large value. Also, factors 

such as lift - off and probe wobble can mask the small changes of coil impedance due to 

defects and make the interpretation of the signal rather difficult. 
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Differential eddy current transducers often consist of a pair of coils that are 

connected in opposition so that the net value of the impedance is cancelled out when both 

coils are in identical situations. Therefore, only difference between impedance of the two 

coils is picked up .. The influence of other factors such as lift- off and probe wobble is 

eliminated because they generally have the same impact on both coils. Differential eddy 

current transducers have higher sensitivity to changes of impedance due to presence of 

flaw than absolute eddy current transducers do. 

Eddy current array eddy current transducers consist of an array of either absolute 

transducers or differential transducers. One application of using artay transducers is in 

aircraft engine disk inspection. Each disk contains 30 slots. An array transducers 

consisting of eight differential tr~sducers is used to scan the surface of each slot 

resulting in a total of 16 signals (real and imaginary parts of the complex impedance) are 

obtained for each slot. These signals are processed using specific signal and image 

processing techniques to indicate the presence of the defect. 

2.5 EC Inspection of Steam Generator Tubes in Nuclear Power Plants 

Eddy current testing methods are widely used for inspecting heat- exchange tubes 

in steam generators in nuclear power plants. Steam generators are used to transfer thermal 

energy from the primary side to the secondary side. Figure 2. 7 shows the layout of the 

heat transfer system in nuclear power plants. Heat generated by the nuclear reactor is 

transferred to the primary coolant that circulates inside the nuclear vessel. The primary 

coolant is circulated through a set of tubes in steam generator where the heat is 
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transferred to a mixture of steam and water through tube walls. The steam is circulated 

inside the secondary loop and is used to drive the steam turbines that are used to generate 

electricity. While in primary loop, the coolant is radioactive, the coolant in the secondary 

loop is not radioactive. It is critical to keep the radioactive coolant from contaminating 

the nonradioactive coolant water. This means that the steam generator tubes have to be 

inspected frequently in order to keep the whole system safe because any potential leak in 

those tubes can result in disastrous consequences. 

Figure 2. 7 Heat transfer system in nuclear power plants [ 42] 

The inspection process involves inserting an eddy current probe into one end of the 

beat exchange tube and moving it until it reaches the other end. The probe is then pulled 

out at a constant speed and the impedance of the probe is measured as a function of time 

(or location in the tube). The data obtained in the inspection process must be calibrated to 

compensate for variations due to the variation in probe characteristics and instrument 
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setting. The calibration tube has the same dimension and material properties as the tubes 

to be inspected. Artificial defects are machined in the calibration tube to provide a 

reference for later data analysis. 

Four excitation frequencies are used in each inspection, and the data obtained for · 

each frequency can be in both absolute and differential mode. 

Bobbin coil eddy current probe, widely used in the inspection of steam generator 

tubes, produces a one - dimensional signal. Although bobbin coil is very good at 

detecting axial defects, it is not very sensitive to circumferential defects. Therefore, 

alternate types of probe, such as the rotating pancake coil (RPC) probe, is used in recent 

years. When inspecting the tubes, the probe is rotating with a constant speed as well as 

moving along the tube axially. It has the obvious advantage that it is equally sensitive to 

both axial and circumferential defects. Also, the data obtained using rotating probe can be 

viewed as an image for each tube instead of a one - dimensional data in the case of 

bobbin coil inspection. This data can give the operator better view of the situation for 

each tube. The eddy current data processed in this thesis is obtained using the rotating 

probe. 

2.6 Defect Characterization Problem 

The crucial problem in tube inspection is defect characterization. This involves 

estimation of the characteristics of the defect, such as the shape, orientation, width, 

length, and depth of the defect. 
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Defect characterization problem is often very difficult to solve due to the lack of 

information about the inspection system, the tube under inspection, and noise generated 

during th~ inspection process. Artifacts are also introduced in the data by the finite size of 

the probe. A common! y used approach for addressing this problem is to assume that the 

measured signal is a convolution of the defect footprint and the probe response: 

Deconvolution methods can then be used to remove the effect of the probe and give an 

estimate of the true defect footprint. Most deconvolution algorithms require a priori 

knowledge of the kernel function. This knowledge is crucial for improving the 

performance of the algorithm, but in general it is very difficult to obtain. Consequently, 

blind deconvolution method that does not require the knowledge of kernel function is 

more suitable to address defect characterization problem. 

In this thesis, an iterative blind deconvolution algorithm based on Richardson - Lucy 

algorithm is described for removing the effect of the probe point spread function. 
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CHAPTER 3. BLIND DECONVOLUTION TECHNIQUES 

3.1 Introduction 

In many applications including astronomy, medical imaging, and remote sensing [3, 

14, 15], images are often degraded by blur and additive noise. Very often this degradation 

is represented by the following linear model: 

g(x, y) = f(x, y) * h(x, y) + n(x, y) 

= 'Lf(n,m)h(x- n,y- m) + n(x,y) 
(2.1) 

n,m 

where g(x,y),f(x,y), and h(x,y) denote respectively the degraded 2- dimensional image , 

the original image and the linear shift-invariant blur which is generally referred to as the 

point spread function(PSF); * denotes the 2 - D convolution operation~ n(x,y) is the 

additive noise, and x, y, n, m e Z, the set of all integers. 

Image restoration technique are used to reconstruct the original imagef(x,y) from the 

degraded observation, g(x,y), with or without the presence of additive noise, n(x,y). Since 

the degraded image, g(x,y), is assumed to be the convolution of original image,f(x,y), and 

the PSF, h(x,y), it is quite obvious that deconvolution techniques perform a very 

important role in image restoration. If the PSF, h(x,y), is assumed to be known explicity, 

we have a classical linear image restoration problem. A variety of techniques have been 

developed to deal with the classical linear image restoration problems, such as inverse 

filtering, Wiener filtering, least - squares filtering, recursive Kalman ~ltering, and 

constrained iterative deconvolution [16, 17, 18, 19]. 
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Unfortunately, in most practical applications, it is often difficult, if not impossible, to 

obtain the information about the original image a pirori, and it is also very difficult to 

accurately model the PSF. This results in limiting the applications of classical image 

restoration techniques. In these applications, the original image, f(x,y), has to be 

estimated directly from the degraded image, g(x,y), with partial or no information about 

the PSF, h(x,y), and the original image,f(x,y). Such an estimation problem is often called 

blind deconvolution. 

For the past two decades, blind deconvolution has been an active research area due to 

its obvious advantage over classical image restoration methods. A variety of techniques 

which combine the PSF identification and image restoration have been developed and 

implemented in the areas of medical imaging, remote sensing, and astronomy and so on. 

In the rest of this chapter, some of the important properties of blind deconvolution are 

described and some commonly used blind deconvolution techniques are discussed. 

3.2 Properties of Blind Deconvolution 

As described earlier, degradation due to blurring process can be modeled in the form 

of equation (3.1). Figure 3.1 gives a general overview of linear degradation model [14]. 

The additive noise, n(x,y ), may include electronic noise, photoelectric noise, film noise, 

or quantization noise, depending on the applications. 

The general blind convolution problem involves estimation of the original image, 

f(x,y), from the degraded image, g(x,y), with partial or no information of the original 
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n(x,y) 

f(x,y) 
H(x,y) 

g(x,y) 

2 - D LSI filter 
True Image Degraded Image 

Figure 3.1 A general linear degradation model 

image, f(x,y), the PSF, h(x,y), or the additive noise, n(x,y). Figure 3.2 gives the general 

model of a blind deconvolution approach [14]. 

Some important characteristics of the blind deconvolution problems include: 

1. The original image and PSF must be irreducible for uniqueness. An irreducible 

signal is a signal that can not be exactly expressed as the convolution of two or 

more component signals, under the assumption that the two - dimensional delta 

function is not a component signal [ 14]. This is very important if a unique 

solution is expected to be obtained. For example, if the original image f( x,y) is 

reducible, e.t.,f(x,y)=fJ(x,y)*h(x,y), then 

g(x, y)- f. (x, y) * / 2 (x, y) * h(x, y) (3.2) 

Since the degraded image g(x,y) consists of three components, it is impossible to 

decide which component(s) belong to the original image and the PSF. 
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~ 

~ 
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g(x,y )=f(x,y) *h(x,y) +n(x,y) 

Degraded Image 

Partial information about the 
original image and the PSF 

Figure 3.2 A general blin4 deconvolution system model 

2. In classical image restoration, the objective is to obtain an estimate of the 

original image that is as close to the true image as possible. In blind 

deconvolution problem, the result maybe a scaled and shifted version of the 

original image [21]. That is: 

1\ 

f(x, y) = Kf(x- a,y- b) (3.3) 

1\ 

where f (x, y) is an estimate of the original image obtained by using a blind 

deconvolution technique, and K, a, and b are arbitrary real constant and denote 

the scaling factor, the displacement in x - axis, and the displacement in y - axis 

respectively. It is usually impossible to find out the value of K, a, and b after 

blind deconvolution without adding additional constrains. 
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3. Generally, blind deconvolution problem is an ill - conditioned problem. This 

implies that in practical applications, a small change in the degraded image can 

produce large changes in the obtained results. This introduces difficulties of 

stability and robustness. 

4. Due to the presence of additive noise, it is impossible to obtain a solution that is 

exactly the same as the true image. The reason is that the only information 

available about the noise is its statistical information. Therefore, noise cannot be 

removed by simply subtracting n(x,y) from the degraded image g(x,y). In some 

cases, it gets even worse when the additive noise makes g(x,y) irreducible. Hence 

blind deconvolution provides only an approximate solution. 

5. Since only partial information of the degradation system is available, the 

algorithm can converge to local minima and hence not be unique. With change of 

initialization conditions and addition of other constrains, the deconvolution 

process may converge to different optimal solutions [22]. 

Due to the numerous applications of blind deconvolution, a lot of research has been 

done to develop fast and robust blind deconvolution algorithms. In the next section, 

typical blind deconvolution techniques are reviewed. 

3.3 Typical Blind Deconvolution Techniques 

Generally, blind deconvolution techniques can be divided into two categories. The 

first category includes the techniques that estimate the PSF before estimating the original 

image. The major advantage of these methods is low computational complexity. The 
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disadvantage is that they can be used only in the case that the PSF is known to have 

special char~cteristics [ 14]. A simple example of this claim is the blur identification 

problem. Most blind deconvolution techniques belong to the second category, which 

estimates the original image and the PSF simultaneously. While it is computationally 

more complex, it has a wider range of applications. This category can be further divided 

into two classes: namely parametric and nonparametric. The parametric approaches 

assume that the model of the original image or the PSF is known, and the nonparametric 

approaches utilize deterministic constraints on the original image such as nonnegativity 

and known finite support. 

3.3.1 Zero Sheet Separation 

Zero sheet separation was first introduced by Lane and Bates [21] in 1987. It is a 

technique that belongs to the second category of approaches. Although it is not 

commonly used, it is worth reviewing since it gives valuable insight into the blind 

deconvolution problem. 

The theory of zero sheet separation method is based on the analytical properties of 

the Z - Transform in multiple dimensions: the zeros of the Z - Transform of a K -

dimensional signal is almost always continuous and lies on a (2K-2) - dimensional 

hypersurface [23]. 

Several basic assumptions are made on the degradation model [21] such as: 

1. No additive noise is present in the degradation system, that is 
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g(x,y) = f(x,y) * h(x,y) 

2. Both the original imagef(x,y) and the PSF h(x,y) have finite support . 

. 3. f(x,y) and h(x,y) are irreducible. 

Based on the assumption (1), the following equation holds: 

(3.4) 

(3.5) 

where G(ZpZ2 ), F(ZpZ2 ), and H(ZpZ2 ) aretheZ-Transformofg(x,y),f(x,y), 

and h(x,y) respectively. This equation indicates that 2- D blind deconvolution problem is 

equivalent to factoring the 2 - D polynomial G(zP Z2 ). More details can be found in 

[24]. 

Zero sheet separation method has a major disadvantage. Since it does not take the 

additive noise into account, it is very sensitive to noise. And this leads to the limitation of 

its implementation in real applications. 

3.3.2 A Priori Blur Identification Method 

A priori blur identification method belongs to the first category mentioned in section 

3.2, where the PSF is estimated first. In order to successfully estimate the PSF, some 

assumptions have to be made. These assumptions include the characteristics of the PSF 

and availability of a known parametric form of the PSF. Based on the assumptions of PSF 

and knowledge of the original image and the degraded image, it is possible to completely 
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identify the PSF. Once the PSF is obtained, one of the classical image restoration 

techniques can be used to estimate the original image. 

There are two commonly used PSF forms [25]. One is horizontal camera motion blur 

of length 2d that has the form: 

h(x,y)={~ 
2d 

y -::1= 0,- oo :::; X :::; oo 

(3.6) 

The frequency domain zeros of this type of PSF are located on the lines perpendicular to 

the direction of the blur and with equal interval of lid. The other commonly used PSF is 

that of a defocused lens system with a circular aperture that has the form: 

h(x,y)={~ 
7!f'2 

~x2 + y2 > r 

~x2 + y2:::; r 
(3.7) 

The frequency domain zeros of this type of are located on the concentric circles around 

the origin that are periodic in r. 

To achieve successful restoration, it is important to estimate the PSF as accurately as 

possible. One approach for completely identifying the PSF is by using the properties of 

frequency domain zeros described in the last section. If the additive noise is ignored, the 

degradation model shown in equation (3.1) is simplified to equation (3.4). This leads to 

the frequency domain relation: , 

G(u, v) = F(u, v)H (u, v) u, v e 9t (3.8) 
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Therefore, the problem of identifying the PSF is equivalent to the problem of deermining 

the zeros of F (u, v) and H (u, v). Once the zeros of H (u, v) has been identified, the 

parameters of the PSF can be decided according to the properties of frequency domain 

zeros. 

The blur identification method based on the frequency domain zeros is one of the 

most popular and successful methods used due to its computational simplicity and 

reliability. But it also has a major drawback of not being robust in the presence of the 

additive noise because the additive noise may change the distribution of the frequency 

domain zeros. 

3.3.3 ARMA Parametric Estimation Methods 

In the blur identification method, the PSF is assumed to have certain form with one -

or two parameters. The assumption in general is not true in most practical applications. 

Another commonly used parametric method is the ARMA estimation method. 

ARMA estimation method is based on the concept that the degraded image can be 

modeled as an autoregressive moving average (ARMA) process. The identification of 

ARMA coefficients leads to the estimation of the original image and the PSF. 

The ARMA model of the degraded image involves the following two parts. 

1. The original image f(x,y) is modeled as a 2 - D autoregressive (AR) process 

described by the following equation: 

f(x, y) = I a(l.m)f(x -l, y- m) + v(x, y) (3.9) 
{l,m)ERa 

(l,m)¢(0,0) 
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where the parameters a(l,m) are the AR coefficients with a(O,O) being 1, and 

f(x,y) is the original image. The term v(x,y) is the modeling error that is a zero-

mean homogeneous noise process independent ofj(x,y), and Ra is the support of 

the AR coefficients a(l,m). The AR coefficients a(l,m) are chosen to minimize 

the variance of modeling error v(x,y). 

2. In most practical applications, the PSF has finite support and it can be modeled as 

a 2- D moving average (MA) process shown as: 

g(x, y) = L.h(l,m)f(x -l, y- m) + n(x, y) (3.10) 
(l,m)ERh 

where the parameter h(l,m) is the PSF or the MA coefficient, n(x,y) is the 

additive noise that is a zero - mean Gaussian process, and Rh is the support of the 

PSF h(l,m). 

Equation (3.9) and (3.1 0) can be lexicographically ordered to form compact matrix-

vector equations: 

f=Af+v (3.11) 

and 

g=Hf+n (3.12) 

Lexicographic ordering is used to map an M X N matrix to a column vector. This row -

ordered vector is defined as: 

XT =·[x(I,I)x(l,2)···x(I,N)· ·····x(M ,l)x(M ,2)···x(M ,N)]T (3.13) 
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where x(l,m) is the (l,m)th element of theM X N matrix [26]. 

Combining equation (3.11) and (3.12), the ARMA model can be expressed as 

(3.14) 

where I is the identity matrix. 

It is very difficult to identify the ARMA coefficients a(l,m) and h(l.m) because of 

computationally complexity. To get around this difficulty, several assumption are made 

[14]: 

1. The PSF is positive, and the restoration process is a conservative process, i.e., 

'Lh(l,m) =1 (3.15) 
(l.m)eRh 

2. The PSF is symmetric. 

3. The PSF has a known parametric form with a few unknown parameters. 

Under these assumptions, different methods can be used to identify the ARMA 

coefficients. Such as the Maximum- Likelihood (ML) approach [28], ~d General Cross 

-Validation (GCV) approach [29]. In ML approach, estimation the coefficients is made 

so that the probability or likelihood of obtaining an accurate estimate of the· original 

image given the coefficient set, { {a(l,m)}, {h(l,m)}, a/, ov2
}, is maximized. a/ and a/ 

are the variances of n(x,y) and v(x,y) respectively. A variety of methods, such as gradient 

- based method, expectation - maximization (EM) method, and least squares method, are 

used to solve the maximization problem [27]. In GCV approach, data is divided into two 

sets: an estimation set and a validation set. The estimation set is used to obtain a model or 
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estimate based on a particular parameter value. The validation set is used to validate the 

performance of model. Both data sets are used for both purposes. 

One major advantage of ARMA parametric estimation method is that it takes the 

additive noise into account when developing the model. Therefore, it is less sensitive to 

the noise. A drawback of this method is that it can converge to local minima. Another 

drawback is that it imposes constraints on the PSF when developing the model, and this 

may limit the application of this method. 

3.3.4 Nonparametric Estimation Methods 

Unlike other blind deconvolution techniques just introduced, nonparametric 

estimation methods do not assume any parametric models of the original image or the 

PSF. Instead, they utilize some deterministic constraints of the original image for 

estimating the PSF and the original image. Some of these constraints include 

nonnegativity, known finite support, and existence of invariant edges. Methods in this 

class include simulated annealing (SA) method [30], nonnegativity and support 

constraints recursive inverse filtering (NAS - RIF) [31, 32], and iterative blind 

deconvolution (IBD) method [33, 34, 35, 36]. All three methods are described in the rest 

of this section. 

3.3.4.1 Iterative Blind Deconvolution Method 

Besides the constraints stated above, the IBD method also imposes the nonnegativity 

and known finite support constraint to the PSF. In IBD method, the PSF and the original 
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image are estimated sequentially in each iteration. The blind deconvolution process 

terminates when convergence criterion is met. Detailed information about ffiD method 

will be presented in next chapter. 

The reasons for the wide usage of mn method include its low computational 

complexity and its robustness in the presence of additive noise. The major disadvantage 

of mn method is that it sometimes does not converge to the optimal solution. 

Additionally, the restoration is sensitive to the initial estimates of the original image and 

the PSF. 

3.3.4.2 Simulated Annealing Method 

Simulated annealing (SA) method is another nonparametric blind deconvolution 

method. The reason it is called simulated annealing is that it is analogous to the annealing 

of metals. It imposes the same deterministic constraints as the ffiD method does, and 

changes the blind deconvolution problem to the problem of the minimization of the 

following cost function [37]: 

J(f(x, y),h(x, y)) = L[f(x, y) * h(x, y)- g(x, y)Y (3.18) 
V'(x,y) 

where j (x, y), h(x, y), and g (x, y) are the estimation of original image, PSF, and the 

degraded itpage respectively. 

Using the deterministic constraints, J is minimized iteratively with respect to 

J ( x, y) and h( x, y) . In each iteration, the parameters are perturbed random! y. The 

perturbation is accepted if J is decreased. If J is increased, the perturbation is accepted 
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with a probability of p = exp( -L1/ffk), where L1l is the change of the value of J, and Tk is 

called the temperature parameter that is used to control the speed of convergence. As the 

process continues, the value of Tk slowly reduced analogous to the annealing of me~als. 

SA method is very reliable and produces reasonable results in the presence of 

additive noise. But the slow convergence and high computational complexity ~evel are 

major obstacles limiting its use in practical application. Also, during the restoration 

process, Tk has to be reduced slowly. Otherwise, the method may converge to local 

minima instead of global minima. 

3.3.4.3 NAS- RIF Method 

The nonnegativity and support constraints recursive inverse filtering (NAS - RIF) 

method is another commonly used nonparametric estimation method. While it imposes 

constraints on the original image similar to the IBD and SA methods, the only 

assumptions made on the PSF is that it is absolutely summable, that is 

I, jh(x, y)j < oo, and that it has an inverse h-1(x,y) that is also absolutely summable. 
'v'(x,y) 

The approach can be used when the exact support of PSF is unknown. 

Figure 3.3 shows a general NAS - RIP deconvolution system model. u(x,y) is a 

variable FIR filter which takes the degraded image g(x,y) as input. NL denotes the 

nonlinear filter that imposes the deterministic constraints on the estimated original image 

j (x, y). Either nonnegativity or the known finite support or both can be applied to 

j (x, y). When both constraints are used, the following cost function is obtained [31]: 
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JNL (X, y) 

g(x,y) 
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Figure 3.3 A general NAS- RIF system model [14] 

J(u)= I J2 (x,y)[l-sgn(f(x,y))] 
(x,y)eDsup 2 

+ r_ [J<x,y)-L
8
j +,I Iu(x,y)-t]

2 

(x,y)eDsup · I L \f(x,y) 

Estimated 
Original Image 

e(x,y) 

(3.19) 

where f(x,y)=g(x,y)*u(x,y), Dsup is the set of all pixels inside the support 

region ofj(x,y ), and Dsup is the set of all pixels outside the support region. LB is the pixel 

value of the background ofj(x,y), the variable yis nonzero only when LB is zero, i.e., the 

background color is black. A variety of methods including steepest - descent and 

conjugate gradient minimization can be used to minimize J(u) and obtain the 

deconvolved image j (x, y). 

The NAS - RIF method does not require the knowledge of the finite support of the 

PSF, and has better convergence property than IBD method. Compared with SA method, 
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NAS - RIF method has lower computational complexity level. However it is sensitive to 

the presence of additive noise. 

_Other nonparametric estimation methods using higher order statistical information of 

the original image to minimize a cost function can be found in [38, 39, 40]. 
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CHAPTER 4. DEFECT CHARACTERIZATION 

USING BLIND DECONVOLUTION 

4.1 Problem Statement 

Etldy current testing techniques are widely used to inspect steam generator tubes in 

nuclear power plants. Different kinds of probes, such as bobbin probes and rotating 

probes, are used in these inspections. The data obtained using EC techniques are analyzed 

using a variety. of signal and image processing methods and useful information is 

extracted. This information can be used to indicate the presence of the defect on the inner 

and outer surface of the tubes. The data can also be further analyzed to estimate the 

shape, width, length, and depth of the defects. This problem is called defect 

characterization. 

Defect characterization in general is fraught with difficulties due to several reasons. 

One major reason is the lack of knowledge of the inspection system and tube under 

inspection. Another reason is that the probe speed changes during the inspection process. 

This may.introduce errors in the collected data. Additive noise generated during the scan 

due to presence of dirt and surface roughness can also present problems. Besides these, 

when an analog signal is sampled to generate a digital signal, quantization errors are 

introduced. This can lead to the additional distortion of the signal. All these reasons make 

defect characterization in steam generator tubes a very challenging task. 

The approach proposed in this thesis for data processing consists of 3 steps: 1) De

noising; 2) Deconvolution; 3) Defect Characterization. In the first step the signal is 
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filtered using conventional procedures to eliminate the additive noise associated with the 

measurement system. The second step is used to eliminate the "smearing" of the true 

signal due to finite size or point spread function (PSF) of the sensor coil. In the third step, 

the processed and deconvolved data is used in a defect characterization algorithm for 

estimating the defect profile. This thesis is focused on addressing the deconvolution 

problem in the second step. 

4.2 Deconvolution of Eddy Current Signal 

A commonly used approach for eliminating the "smearing" effect of the probe is to 

assume that the observed signal is a convolution of the true defect profile and the probe 

PSF. One can then use deconvolution methods to extract the true defect image from the 

knowledge of measured data and probe PSF. Since the knowledge of the inspection 

system and the tube and probe PSF are generally unknown, blind deconvolution, 

discussed in the chapter 3, is shown to be more suitable to handle this problem. 

Equation (3.1) gives a general degradation model that can also be used to represent 

the defect characterization problem. Neglecting the presence of the additive noise, the 

equation can be simplified as follows: 

g(x, y) = f(x, y) * h(x, y) 

= "Lf(n,m)h(x-n,y-m) (4.1) 
n,m 

where g(x, y), f(x, y), and h(x, y) are the observed or raw signal, true defect 

footprint, and probe point spread function (PSF) respectively. Under this assumption, the 
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Figure 4.1 Schematic of Blind Deconvolution Method 

blind deconvolution problem can be modeled as shown in figure 4.1. The partial 

information of the true defect footprint and PSF includes nonnegativity and finite support 

region. 

In a practical situation as in steam generator tube inspection in nuclear power plants, 

one of the concerns of defect characterization problem is the computational complexity 

due to the large amount of tubes to be inspected in a short period of time. Among all the 

blind deconvolution methods, iterative blind deconvolution (ffiD) method has an 

advantage over other methods in terms of computational complexity. Consequently this 

thesis focuses on the iterative blind deconvolution method for obtaining both the probe 

PSF and estimate of the defect footprint: Both the probe response and the defect footprint 

are estimated sequentially in each iteration according to the observed data and other 
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known a priori information of the true defect footprint and probe response. No 

assumption is made about the shape of the probe response or the defect footprint when 

performing blind deconvolution. Instead, known deterministic constraints are imposed 

such as nonnegativity and fmite support of the defect profile and the probe response. The 

deconvolution procedure is terminated when the result converges. Figure 4.2 shows a 

general iterative blind deconvolution model. ( In the figure, k represents the number of 

iteration. 

Yes 

Stop 

Estimate defect 
footprint 

Impose defect 

footprint constraints 

Initial 
Guess 

Impose probe 

response constraints 

E~timate probe 
response 

Figure 4.2 A general iterative blind deconvolution model 
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4.3 Iterative Blind Deconvolution Using Wiener Filter 

A number of algorithms can be included in the category of iterative blind 

deconvolution. Popular algorithms is the iterative Wiener filtering. It is based on the 

classical 2- dimensional Wiener filter that is widely used in image restoration and other 

A A 

image processing applications. In iterative Wiener filter method, f (x, y), h(x, y) , and 

g(x, y) denote the estimate of defect footprint, probe impulse response, and the 

A II. 

observed signal respectively, and at kth iteration, the updated fk (x, y) and hk (x, y) are 

obtained through the following two equations [33, 34]: 

" . 
H" ( ) = G(u, v)Fk-l (u, v) 

k u, v 2 2 

I.Fk-l (u, v)l + aj,.. I 
/ jHk-l (u, v) 

(4.2) 

and 

" . 
F" ( ) = G(u, v)Hk (u, v) 

k u, v 2 

IBk (u, v)l + ~, ,... 
1
2 

/ jFk-l (u, v) 

(4.3) 

where G(u, v), Hk (u, v), and Fk (u, v) are the Fourier transforms of g(x, y), 

II. II. 

hk (x, y), and fk (x, y) respectively and (·)* represents the complex conjugate of (·).ex. 

is a real constant representing the energy of the additive noise which is determined before 

the deconvolution process using a priori knowledge of the noise level. In the case of 
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unknown noise level, a value of 0.1 is often chosen for a.. In each iteration, deterministic 

constraints are applied to the estimated defect footprint and the probe impulse response. 

A general iterative Wiener filter model is shown in figure 4.3 .. 

One advantage of iterative Wiener fllter is its low computational complexity. 

Further, since it is based on classical 2 - dimensional Wien~r filter, it shows a certain 

level of robustness in the presence of additive noise. 

Yes 

Impose defect 

footprint Constraints 

Equation (4.3) 

Initial 
Guess 

Equation (4.2) 

Impose probe 

response Constraints 

Figure 4.3 A general iterative Wiener filter system model 
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4.4 Richardson- Lucy Algorithm 

Another common iterative blind deconvolution method is based on the Richardson

Lucy algorithm developed by Richardson [5] and Lucy [6] in 1970s. It was originally 

used in the area of statistical astronomy for estimating the true image from the blurred 

observed image. The fundamental idea in Richardson- Lucy algorithm is to model the 

true image, point spread function, and observed image as probability - frequency 

functions and iteratively estimate the true image and point spread function by applying 

Bayes's theorem. The problem in this case is to estimate the frequency distribution 

function lfl(~') of ~· from known observations x~, x~, · · ·, x; which are discrete 

samples of a continuous function defined by the following distribution function: 

(4.4) 

where P(xl~)d~ is the conditional probability that x' is in the interval (x,x + dx) 

when ~· is equal to ~. If the conditional probability function P(~~) is considered as 

the point spread function or the kernel, the integral equation (4.4) is nothing but a one

dimensional continuous version of degradation model described by equation ( 4.1 ). This 

similarity between these two models is exploited in the statistical method for solving the 

image degradation problem. 

9enerally, the information about probability distribution function lf/(~) is hard to 

obtain, except for the following commonly used assumptions: 

(4.5) 
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and 

(4.6) 

Although it is very straightforward to use a numerical method to calculate the integral 

equation ( 4.4 ), it often results in poor solutions unless the sample size N is large. In order 

to overcome this problem, an iterative method was developed. 

Assume that QC~Ix)dx is the conditional probability that ~ is in the interval 

(~,~ + d~) when x' is equal to x. Under this assumption, the probability that 

x'e (x,x + dx) and~· e (~,~ + d~) is: 

t/J(x)dxx QC~Ix)d~ (4.7) 

On the other hand, the above probability is equal to: 

ljl(~)d~ X P(x,~)dx (4.8) 

Hence, we have: 

x _lfl(~)xP(xl~) 
f/JC ) - QCejx) (4.9) 

Substituting equation (4.9) into equation (4.4), we have: 

(4.10) 
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which is essentially Bayes's theorem of conditional probability. 

Also, the following equation is generally true: 

lfl(~) = J t/J(x)Q(~jx)dx (4.11) 

which is just the inverse integral equation of equation ( 4.4 ). Although this integral 

equation cannot be used directly to calculate lfl( ;) because the conditional probability 

Q( ~~x) is generally unknown, it gives us a possible iterative method to estimate ljl( ~) . 

That is, given an initial guess of ljl( ~) and known conditional probability function 

P( ~~) , equation ( 4.1 0) can be used to estimate the conditional probability function 

QC;Ix). This estimate is then integrated over if (x), which is an approximation to t/J(x) 

obtained from the observed data., according to equation ( 4.11) to get an updated estimate 

of lfl( ~) . This process is repeated until a reasonable solution is achieved. In other words, 

if ljl' (q) is the estimate in rth iteration, the estimate in (r+1)th iteration, lj/'+
1 (~),is 

where 

and 

lflr+I (~) = J if (x)Q' C~lx)dx 

Q' (~ lx) =VI' (~)P(xj~) 
t/J' (x) 

(4.12) 

(4.13) 

(4.14) 
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Substituting equation (4.13) into equation (4.12) and eliminating Qr C~lx)from equation 

(4.12), we have: 

(4.15) 

Equation (4.15) shows that the constraint condition stated in equation (4.6) is 

conserved, i.e. lf/r+l ( ~) ~ 0 if lj/0 
( q) ~ 0. It also shows that the iterative algorithm 

converges when tjJ (x) = t/Jr (x). 

Equation (4.14) and (4.15) together constitute the iterative technique in the one-

dimensional case. The extension to the 2 - dimensional case is straightforward. In the 2 -

. dimensional case, the iterative technique is based on the following equations: 

lf/r+l (~,TJ) = lf/r (~,TJ)fJ tjJ (x, y) P((x, y) I (q,T]))d~dTJ (4.16) 
t/Jr (x, y) 

where 

(4.17) 

The 2- dimensional iterative technique can be easily implemented on image data in 

classical image restoration applications under the assumption that the conditional 

probability function P((x, y)l(q.T])) is equal to the normalized. point spread function or 

the kernel centered at the point (;, 17) , i.e. H (X - ; , y - 17) : 
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-
If/'+' (q,T/) =If/' (q,T/)ff ;,~~.~) H(x- q, y -T/)dxdy (4.16) 

· where 

t/J' (x, y) = JJV/' (~,TJ)H(x- ~, y- TJ)d~dTJ (4.17) 

In this case, the initial guess V/0 (~,TJ) is a nonnegative function and has the same 

integrated intensity as the observed image. 

4.5 Blind Deconvolution Using Richardson - Lucy Algorithm 

Equation ( 4.16) and ( 4.17) gives us a possible method to solve the classical image 

restoration problem under the assumption that V/( ~, TJ) , t/J( x, y) , and H (X - ~, y - TJ) 

are the true image f ( x, y) , the observed degraded image g (X, y) , and the point spread 

function h(x, y) in the image degradation system. Another assumption is that the point 

spread function is known a priori. Equations ( 4.16) and ( 4.17) can be combined and 

expressed in the compact form: 

f'+ 1(x,y)={[ g(x,y) ]®h(-x,-y)}f'(x,y) (4.18) 
f' (x, y) ® h(x, y) 

where ® denotes the 2 - dimensional convolution operation. 

In practice, the point spread functjon has a complex form and is not known in 

advance. In Richardson - Lucy algorithm, an iterative equation for estimating the updated 

point spread function is needed. In fact, the derivation of this equation is quite 
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straightforward. It can be easily obtained by exchanging the role of h(x, y) and 

f (x, y). In this case, the following two equations present the fundamental ideas of blind 

deconvolution using the Richardson- Lucy algorithm [4.3, 4.4]: 

Estimate the PSF iteratively according to 

h'+1(x,y)={[ g(x,y) ]®f'(-x,-y)}h'(x,y) (4.19) 
. h'(x,y)®f'(x,y) 

and estimate the true image according to 

/'+1 (x, y) = {[ g(x, y) ] ® h'+1 
( -x,-y)}f' (x, y) · (4.20) 

f' (x, y) ® h'+1 (x, y) 

In early 1990s, Holmes frrst implemented the Richardson- Lucy algorithm irt blind 

deconvolution applications [41]. In his method, each iteration is divided into two steps: 

the first step is to estimate the updated point spread function h r+l ( x, y) given the 

knowledge of observed degraded image g(x, y), estimate of the point spread function 

h' (x, y), and estimate of the true image f' (x, y) according to equation (4.19), and in 

th~ second step the updated true image f r+l (x, y) is estimated given the knowledge of 

observed degraded image g(x,y), estimate of the point spread function h'+1(x,y) and 

estimate of the true image f' (x, y) according to equation (4.20). Also worth noting is 

that the initial guess of true image f 0{x, y) and point spread function h0 (x, y) are 
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needed and these initial guess must satisfy the nonnegativity constraints described m 

equation (4.6). 

The following figures show the performance of blind deconvolution method using 

both iterative Wiener filter and Richardson - Lucy algorithm. The degraded image is 

generated from a synthetic image (figure 4.4(a)) blurred by Gaussian point spread 

function (figure 4.4(b)) without additive noise (figure 4.4(c)). Figure 4.5 shows the result 

obtained using the iterative Wiener filter defined by equations (4.2) and (4.3). Figure 4.6 

shows the result obtained using Richardson - Lucy algorithm. The results show that the 

performance of Richardson - Lucy algorithm is much better than the performance of 

iterative Wiener filter although iterative Wiener filter converges much faster that 

Richardson - Lucy algorithm. Since blind deconvolution using Richardson - Lucy 

algorithm provides both reasonable speed and good estimate true image, it is clearly 

suited for the defect characterization problem in Eddy Current data analysis. 

(a) (b) (c) 

Figure 4.4 Synthetic images. (a) true image; (b) Gaussian PSF; (c) degraded image. 
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(a) (b) 

Figure 4.5 Results using iterative Wiener filter. (a) Estimated true image. (b) 

Estimated PSF. 

(a) (b) 

Figure 4.6 Results using Richardson- Lucy algorithm. (a) Estimated true image. (b) 

Estimated PSF. 
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Although Holmes's method is easy to implement, its speed of convergence is often 

slow. And its failure to achieve reasonable results shows its lack of robustness. To 

overcome these two disadvantages, Fish, Brinicombe, and Pike [ 4] proposed another 

method of implementing -the Richardson - Lucy algorithm. In the rth blind iteration, the 

point spread function h' ( x, y) is estimated by performing a specified number of 

Richardson - Lucy iterations instead of. once as in Holmes's method. Likewise, the 

original image is estimated by p~rforming the same number of Richardson - Lucy 

iterations. This method can be summarized as the following two equations: 

h r+l( ) {[ g(x,y) ] ® j'( )}h r+l( ) 
k+l x, y = hkr+l (x, y) ® f' (x, y) -x,-y k x, y (4.21) 

and 

.; r+l ( ) {[ g (X, Y) ] ® h r+l ( )} .; r+l ( ) 
J k+l X, Y = fkr+l (X, y) ® h'+l (x, y) -x,-y J k X, Y (4.22) 

where k is the number of Richardson - Lucy iteration. Compared to Holmes's method, 

Fish's method. has a faster speed of convergence and is more robust. 

4.6 New Convergence Criteria 

Since the blind deconvolution method based on Richardson - Lucy algorithm is in 

fact an iterative method, choosing an appropriate convergence criterion is important for 

overall performance. Although Holmes's method and Fish's method can achieve 

reasonable results, the convergence criterion in these methods have not been fully 

investigated. This leads to the uncertainty with respect to its robustness. 
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In the ideal case,. the blind deconvolution process should terminate when the 

estimated true image is identical to the true image. However, the knowledge of true 

image and the point spread function is often unavailable. The only information accessible 

is the noisy observed input data. This leads to the difficulty of determining when blind 

deconvolution should stop. In order to deal with the convergence problem, a new 

convergence criterion based on mean square error (MSE) is proposed in this section. 

In the degradation model used represented by equation (4.1), we assume that the 

observed image is the convolution of true image and point spread function. Therefore, a 

error function which is defined to measure the difference between the observed image 

and the convolution of estimated image f (x, y) and estimated point spread function 

h(x, y) can be used as the convergence criterion. This error function is based on the 

mean square error approach and is defined as: 

E =_!_ I,[g(x,y)- f' (x, y) ® h' (x, y)y 
Nx.y 

(4.23) 

where N is the total number of pixels in the true image. Equation (4.23) shows that in the 

absence of additive noise, the mean square error E eventually goes to zero when the 

estimated true image and estimated point spread function are identical to the true image 

and true point spread function. In the presence of additive noise, the blind deconvolution 

process is terminated when error E is less than a predetermine tolerance value. 
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4.6.1 Modified Richardson- Lucy Algorithm 

One advantage that Fish's method has over Holmes's method is that it increases the 

speed of convergence. However, further improvement can be achieved. Fish's method 

estimates the. point spread function and true image for a given number of Richardson-

Lucy iterations in each and every blind iteration. This number is not always the optimal 

one. In order to make the number of Richardson- Lucy iterations adaptively, an alternate 

convergence criterion is introduced. In each blind iteration, the number of Richardson -

Lucy iteration is calculated based on the following function: 

(4.24) 

where r is the number of blind iteration, k is the number of Richardson - Lucy iterations 

performed in rth blind iteration when estimating the point spread function. C represents 

the cost function when estimating the point spread function. Figure 4. 7 presents the 

detailed procedures for implementing the proposed new convergence criteria and 

modified Richardson - Lucy algorithm . When the value of C is less than a predetermine 

number, the process of estimating point spread function terminates and the number of 

Richardson - Lucy iterations performed is stored. Then the true image is estimated. The 

whole blind deconvolution process terminates when the convergence criterion defined in 

equation 4.23 is satisfied. 

Both Fish's method and the method with new convergence criteria were evaluated 

using synthetic data as well as field data. The results will be presented in chapter 5. Table 
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Degraded Image 

Estimate PSF 
(perform one 
Richardson -

Lucy iteration) 

Estimate PSF 
(perform k 

Richardson -
Lucy iter~tion) 

Fi~ure 4.7 Method with new conver~ence criteria 
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4.1 summarizes the comparison of convergence speed for Fish's method and the method 

with new convergence cirteria. The data used include two synthetic images convolved 

with a Gaussian PSF. Two sets of eddy current data drawn from the calibration tube were 

also used. Three types of initial estimate for point spread function, namely, random, 

uniform and Gaussian, are used (the results of blind deconvolution of these data will be 

presented in chapter 5). The results clearly show that with the proposed algorithm, the 

speed of convergence of blind deconvolution method is dramatically increased. In some 

cases, results can be achieved in less than half of the number of iterations used in Fish's 

method. This leads to lower the overall computational complexity which is critical for 

practical applications such as steam generator tube inspection in nuclear power plants. 

4. 7 Application to Defect Characterization of Eddy Current Data 

The application of blind deconvolution algori~ to practical eddy current data is not 

as straightforward as it seems. Figure 4.4 shows an example of typical eddy current data 

obtained from steam generator tubes in nuclear power plants. The factors that affect the 

data include variations of probe scanning speed and liftoff. Other changes in the scanning 

environment can also affect the data. Due to these reasons, the probe response is not 

invariant during the duration of scanning. However, the probe response is assumed to be 

invariant locally, which is very reasonable. Therefore, in order to apply blind 

deconvolution, a small section around the defect signal is chosen as input. This small 
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Table 4.1 Comparison of speed of convergence between Fish's method 

and method with new convergence criteria 

Defect Initial Estimate Fish's Method with 
ofPSF method Conv. 

(No. R-L iter.s) (No. R-L iter.s) 
Test data 1 Random 220 106 

(cross) function 
Test data 1 Uniform 180 152 

(cross) function 
Test data 1 Gaussian 140 96 

(cross) function 
Test data 2 Random 100 50 
(rectangle) function 
Test data 2 Uniform 50 40 
(rectangle) function 
Test data 2 Gaussian 40 34 
(rectangle) function 
Defect A Random 30 24 
(400kHz) function 
Defect A Uniform 30 28 
(400kHz) function 
Defect A Gaussian 20 12 
(400kHz) function 
DefectE Random 30 26 

(300kHz) function 
DefectE Uniform 30 24 
(300kHz) function 
Defect E Gaussian 20 16 

(300kHz) function 

Note: Fish's method: Fish's blind deconvolution method; 

Method with Conv.: method with new convergence criterion; 

No. R-L iter.s: Number of Richardson- Lucy iterations. 

51.8% 

15.6% 

31.4% 

50.0% 

20.0% 

15.0% 

20.0% 

6.7% 

40.0% 

13.3% 

20.0% 

20.0% 
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Figure 4.8 A typical eddy current data (Tube NO. DHR006C012I010). 

section IS called regiOn of interest (ROI). One of the pnmary objectives of the 

preprocessing step is to automate the selection of the ROI in Eddy Current C - scan 

images. 

Since defects often occur within the tube support plate (TSP) region the 

preprocessing is narrowed down to the TSP region. The signal outside the TSP region 

which is mostly defect free can be used to obtain the statistical parameters that can be 

used for denoising the signal within the TSP region. The overall approach for defect 

characterization consists of 3 steps: 1) Preprocessing; 2) Deconvolution; 3) Defect 

characterization. 

For data from any given tube, preprocessing includes the following steps 

1. Threshold the data within the TSP region, d(x,y), according to the equation 

given by 
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d(x, y) <= T 

d(x,y)>T 
(4.25) 

where threshold value T is given by T =aa, and a the standard deviation of the 

data outside the TSP region, and a is a constant, chosen according to the noise 

level in the data outside the TSP region. In practice, a value of 2 is chosen for a. · 

2. Calculate the binary mask function m(x,y) from data d(x,y) according to the 

equation given by 

m(x,y) ={~ d(x,y) =0 

d(x,y) >0 
(4.26) 

3. Apply binary morphological operations "closing" and "opening" to m(x,y). to 

obtain the new mask m'(x,y) function. This step is used for removing isolated 

spike noise pixels. 

4. The denoised data D(x,y) is obtained according to the following equation 

D(x, y) = d(x, y) • m'(x, y) (4.27) 

where • denotes the pixel by pixel product. 

Figure 4.9 shows the results of performing preprocessing on data obtained from one 

of the field tubes. Results of preprocessing show significant improvement in the quality 

of the data without the introduction of any additional distortion. 

After preprocessing, an appropriate ROI of data is chosen to be used as input to the 

blind deconvolution operation. The implementation of the blind deconvolution algorithm, 
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(a) (b) (c) 

Figure 4.9 Results of preprocessing (a) Defect signal (b) Signal after thresholding (c) 

Signal after preprocessing. 

described earlier, iteratively estimates the PSF (the kernel) and true Image until 

convergence is achieved. The following steps summarize this procedure: 

1. Initialize estimate of probe impulse response/PSF h(x, y) and defect 

footprint f (x, y). 

2. Estimate the new probe response using the measurement h(x , y) according to 

equation (4.21) and the convergence criterion in equation (4.24). Store the 

number of Richardson- Lucy iterations. 

3. Incorporate the finite support constraint of probe response. 
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4. Estimate the defect footprint f (x, y) according to equation (4.22) and the 

number of Richardson - Lucy iterations obtained in step 2. 

5. Incorporate the finite ~upport constraint of defect footprint. 

6. Repeat steps 2 through 5 until convergence is achieved. The convergence 

condition is given by equation ( 4.23). 

There are several issues that should be carefully considered in this algorithm: 

1. In order to begin the blind deconvolution process, the necessary input 

information includes the observed data, the initial estimate of probe response 

h(x, y) and defect footprint J(x, y ). Since no detailed knowledge about 

probe response h(x, y) and defect footprint f (x, y) is available, any choice 

of initial guess is valid. However the final results of blind deconvolution 

depend on the initial estimate. Therefore, a careful choice of the initial 

estimate can certainly improve the performance. Generally, uniform 

distribution function is used as initial estimate. In steam generator tube 

inspection, absolute probes are used. From numerical simulation using the 

finite element model, it is well known that the impulse response/PSF of an 

absolute probe has a Gaussian shape. Therefore, using a Gaussian function as 

the initial estimate of probe impulse response h { x, y) instead of uniform 

distribution can achieve better performance. 

2. · Since the sampling rates for axial direction and circumferencial direction are 

often different, it is important to interpolate the data so that the sampling rates 
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for both directions are the same. This is also critical for generating a 

reasonable Gaussian distribution data as initial estimate of probe impulse 

response h(x, y) with known probe diameter. Since the tube support plate 

always has the length of three quarters of an inch, the sampling rate can be 

estimated according to the following equation: 

(4.28) 

where R is the sampling rate in the unit of pixels per inch, and L is the length 

of the tube support plant in number of pixels. 

3. The finite support of defect footprint f (x, y) is vital for improving the 

performance of characterization. In this algorithm, the finite support of 

J(x, y) is decided according to the support region of defect signal In 

observed data. In general, the support of f (x, y) is taken as the smallest 

rectangle that contains the support region of defect signal in observed data. 

4. The nonnegativity constraints for defect footprint f (x, y) and probe response 

h(x, y) do not need to be incorporated separately. They are automatically 

satisfied in the Richardson- Lucy algorithm as long as the initial estimates of 

f (x, y) and h(x, y) satisfy nonnegativity constraints. 

In next chapter, results of implementing the blind deconvolution method using 

Richardson - Lucy algorithm are presented. The test EC data includes both calibration 
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and field data. Different initial estimates of defect footprint f ( x, y) and probe impulse 

response h ( x, y) are used and the results are discussed. 
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CHAPTER 5. RESULTS, CONCLUSION, 

AND DISCUSSIONS 

The blind deconvolution method described in chapter 4 was implemented on steam 

generator tube inspection data. Steam generator tube inspection is generally carried out using 

a bobbin probe or a rotating pancake coil probe. In this work, data was obtained using a 

rotating pancake coil probe. The calibration tube has an outer diameter of 0.875 inch with 

both axial and circumferential defects machined. The diameter of the pancake probe is 0.080 

inch, and excitation frequencies used are 400 kHz, 300 kHz, and 200 kHz. This method does 

not perform very well in dealing with the data obtained from bobbin coil. The reason will be 

discussed later. 

First, the algorithm was implemented on synthetic data sets as shown in figures 5.1 -

5.6. The algorithm was implemented next on three sets of data obtained from the calibration 

tube where the defect information is fully known. The true defect footprint can be generated 

manually using the available information. Therefore, the results of the blind deconvolution 

· using Richardson - Lucy algorithm can be compared with the true defect footprint to 

determine the effectiveness of the blind deconvolution method. Figures 5.7-5.18 present the 

results obtained by applying blind deconvolution method to the calibration data. When 

applying the blind deconvolution method, random, uniform, and Gaussian function were used 

as the initial guess of probe impulse response. 
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5.1.1 Results of Synthetic Data Sets 

In this section, two synthetic data sets were used to evaluate the performance of blind 

deconvolution method based on Richardson - Lucy algorithm. The blurred image was 

generated by "smearing" the synthetic true image using a Gaussian PSF. For each data set, 

three different initial estimates for PSF were used, namely random, uniform and Gaussian. In 

each case, results obtained using Fish's method is compared with the results obtained using 

the method with new convergence criteria. 

Figures 5.1, 5.2 and 5.3 present the results for synthetic data set I. The true image is a 

cross which is shown in figure 5.1 (a). Using a Gaussian PSF shown in figure 5.1 (b), the true 

image was "smeared" to produce a synthetic measurement which is shown in figure 5.1 (c). 

This image was then deconvolved using the Richardson- Lucy algorithm. Figures 5.1 (d) 

and (f) present the results obtained using a random initial estimate of the PSF and figures 5.1 

(e) and (g) present the corresponding estimated PSF. Figures 5.2 (a) and (c) present the 

results obtained using a uniform initial estimate of the PSF, and figures 5.2 (b) and (d) 

present the corresponding estimated PSF using a uniform initial estimate of the PSF. Figures 

5.3 (a) and (c) present the results obtained using a Gaussian initial estimate of the PSF, and 

figures 5.3 (b) and (d) present the corresponding estimated PSF using a Gaussian initial 

estimate of the PSF. 

The results of all three cases clearly show that initial estimate for PSF has big impact on 

the final results. The results obtained using Gaussian initial estimate for PSF is seen to yield 

the best results as expected. Random initial estimate for PSF generated the worst results. 

Comparing the results obtained using Fish's method and that obtained using the method with 

new convergence criteria, we can see that both methods performs well for the synthetic data 
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(a) (b) (c) 

(d) (e) 

(f) (g) 

Figure 5.1 Results on synthetic data. (a) True image; (b) Gaussian PSF; (c) Observed image; 

(d) Deconvolved image using random initial estimate of PSF(Fish, after 220 R- L 

iterations); (e) Estimated PSF using random initial estimate of PSF(Fish); (f) Deconvolved 

image using random initial estimate of PSF(new convergence criteria, after 106 R- L 

iterations); (g) Estimated PSF using random initial estimate of PSF (new convergence 

criteria) 
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(a) (b) 

(c) (d) 

Figure 5.2 Results on synthetic data in Figure 5.l(c). (a) Deconvolved image using uniform 

initial estimate of PSF(Fish, after 180 R - L iterations); (b) Estimated PSF using uniform 

initial estimate of PSF(Fish); (c) Dec~nvolved image using uniform initial estimate of 

PSF(new convergence criteria, after 152 R - L iterations); (d) Estimated PSF using uniform 

initial estimate of PSF (new convergence criteria) 
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(a) (b) 

(c) (d) 

Figure 5.3 Results on synthetic data in Figure 5. l (c). (a) Estimated image using Gaussian 

initial estimate for PSF(Fish, after 140 R - L iterations); (b) Estimated PSF using Gaussian 

initial estimate of PSF(new convergence criteria) ; (c) Deconvolved image using Gaussian 

initial estimate for PSF (new convergence criteria, after 96 R- L iterations); (d)Estimated 

PSF using Gaussian initial estimate of PSF (new convergence criteria) 
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set. Although the method with new convergence criteria doesn't dramatically improve the 

fmal results, it does save the computational time which is critical in practical applications. 

Figures 5.4, 5.5 and 5.6 present the results for synthetic data set I. The true image is a 

rectangle which is shown in figure 5.4 (a). Using a Gaussian PSF shown in figure 5.4 (b), the 

true image was "smeared" to produce a synthetic measurement which is shown in figure 5.4 

(c). This image was then deconvolved using the Richardson- Lucy algorithm. Figures 5.4 

(d) and (f) present the results obtained using a random initial estimate of the PSF and figures 

5.4 (e) and (g) present the corresponding estimated PSF using a random initial estimate of the 

PSF. Figures 5.5 (a) and (c) present the results obtained using a uniform initial estimate of 

the PSF, and figures 5.5 (b) and (d) present the corresponding estimated PSF using a uniform 

initial estimate of the PSF. Figures 5.6 (a) and (c) present the results obtained using a 

Gaussian initial estimate of the PSF, and figures 5.6 (b) and (d) present the corresponding 

estimated PSF using a Gaussian initial estimate of the PSF. 

The results of all three cases clearly show that initial estimate of PSF has big impact on 

the final results. The results obtained using Gaussian initial estimate of PSF is seen to yield 

the best results as expected. Random initial estimate of PSF generated the worst results. 

Comparing the results obtained using Fish's method and that obtained using the method with 

new convergence criteria, we can see that both methods performs well for the synthetic data 

·set. Although the method with new convergence criteria doesn't dramatically improve the 

final results, it does save the computational time which is critical in practical applications. 
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(a) (b) (c) 

(d) (e) 

(f) (g) 

Figure 5.4 Results on synthetic data. (a) True image; (b) Gaussian PSF; (c) Observed image; 

(d) Deconvolved image using random initial estimate of PSF(Fish, after 100 R- L 

iterations); (e) Estimated PSF using random initial estimate of PSF(Fish); (f) Deconvolved 

image using random initial estimate ·of PSF(new convergence criteria, after 50 R - L 

iterations); (g) Estimated PSF using random initial estimate of PSF (new convergence 

criteria) 
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(a) (b) 

(c) (d) 

Figure 5.5 Results on synthetic data in Figure 5.l(c). (a) Deconvolved image using uniform 

initial estimate of PSF(Fish, after 50 R- L iterations); (b) Estimated PSF using uniform 

initial estimate of PSF(Fish); (c) Deconvolved image using uniform initial estimate of 

PSF(new convergence criteria, after 40 R- L iterations); (d) Estimated PSF using uniform 

initial estimate of PSF (new convergence criteria) 
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(a) (b) 

(c) . (d) 

Figure 5.6 Results on synthetic data in Figure 5. l (c). (a) Estimated image using Gaussian 

initial estimate for PSF(Fish, after 40 R- L iterations); (b) Estimated PSF using Gaussian 

initial estimate ofPSF(new convergence criteria); (c) Deconvolved image using Gaussian 

initial estimate for PSF (new convergence criteria, after 34 R- L iterations); (d)Estimated 

PSF using Gaussian initial estimate of PSF (new convergence criteria) 
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5 .1.2 Results of Calibration Data 

In this section, three calibration data sets were used to evaluate the performance of the 

blind deconvolution method based on Richardson - Lucy algorithm. The calibration tube has 

an outer diameter of 0.875 inch with both axial and circumferential defects machined. The 

diameter of the pancake probe is 0.080 inch, and excitation frequencies used are 400 kHz, 

300 kHz, and 200 kHz. For each data set, three types of initial estimates of probe PSF were 

used, namely random, uniform and Gaussian. In each case, both Fish's method and the 

method with the new convergence criteria were studied. 

Figures 5.7, 5.8 and 5.9 present the results for calibration data set A for an axial defect 

of length 0.50". The observed raw data is shown in figure 5.7 (a), the data after 3dB 

thresholding is shown in figure 5.7 (b), and the true defect image is shown in figure 5.7 (c). 

This raw data was then deconvolved using the Richardson- Lucy algorithm. Figures 5.7 (d) 

and (f) present the results obtained using a random initial estimate of the PSF, and figures 5.7 

(e) and (g) present the corresponding estimated PSF using a random initial estimate of the 

PSF. Figures 5.8 (a) and (c) present the results obtained using a uniform initial estimate of 

the PSF, and figures 5.8 (b) and (d) present the corresponding estimated PSF using a uniform 

initial estimate of the PSF. Figures 5.9 (a) and (c) present the results obtained using a 

Gaussian initial estimate of the PSF, and figures 5.9 (b) and (d) present the corresponding 

estimated PSF using a Gaussian initial estimate of the PSF. Figure 5.10 presents the one 

dimensional cross section of results on defect A. 

The results· in all three cases again show that initial estimate of PSF has a big impact on 

the fmal results. The results obtained using Gaussian initial estimate of PSF are slightly 

better than the results obtained using uniform and random initial estimate of PSF. Compared 
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(a) (b) (c) 

(d) (e) 

(f) (g) 

Figure 5.7 Results on calibration data from defect A, excitation frequency: 400kHz; (a) Raw 

data; (b) Raw data after 3dB thresholding; (c) True defect profile; (d) Deconvolved defect 

profile using random initial estimate of PSF (Fish, after 30 R - L iterations); (e) Estimated 

PSF using random initial estimate of PSF (Fish); (f) Deconvolved defect profile using 

random initial estimate of PSF (new convergence cri teria, after 24 R- L iterations); (g) 

Estimate PSF using random initial estimate of PSF (new convergence criteria) 
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(a) (b) 

(c) (d) 

Figure 5.8 Results on calibration data from defect A, excitation frequency: 400kHz; (a) 

Deconvolved defect profile using uniform initial estimate of PSF (Fish, after 30 R - L 

iterations); (b) Estimated PSF using uniform initial estimate of PSF (Fish); (c) Deconvolved 

defect profile using uniform initial estimate of PSF (new convergence criteria, after 28 R- L 

iterations); (d) Estimated PSF using uniform initial estimate of PSF (new convergence 

criteria) 
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(a) (b) 

(c) (d) 

Figure 5.9 Results on calibration data from defect A, excitation frequency: 400kHz; (a) 

Deconvolved defect profile using Gaussian initial estimate of PSF (Fish, after 20 R- L 

iterations); (b) Estimated PSF using Gaussian initial estimate of PSF (Fish); (c) Deconvolved 

defect profile using Gaussian initial estimate of PSF (new convergence criteria, after 12 R

L iterations); (d) Estimated PSF using Gaussian initial estimate of PSF (new convergence 

criteria) 
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(b) 

Figure 5.10 One dimensional cross section of results on defect A. (a) Results obtained using 

uniform initial estimate of PSF; (b) Results obtained using Gaussian initial estimate of PSF. 
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the results obtained by using Fish's method and the method with new convergence criteria, 

we can see that both methods performs well on the calibration data set. Although the method 

with new convergence criteria does not dramatically improve the fmal results, it offers 

savings in computational time. 

Figures 5.11, 5.12 and 5.13 present the results for calibration data set E for a 

circumferential defect of length 0.50". The observed raw data is shown in figure 5.11 (a), the 

data after 3dB thresholding is shown in figure 5.11 (b), and the true defect image is shown in 

figure 5.11 (c). This raw data was then deconvolved using the Richardson- Lucy algorithm. 

Figures 5.11 (d) and (f) present the results obtained using a random initial estimate of the 

PSF, and figures 5.11 (e) and (g) present the corresponding estimated PSF using a random 

initial estimate of the PSF. Figures 5.12 (a) and (c) present the results obtained using a 

uniform initial estimate of the PSF, and figures 5.12 (b) and (d) present the corresponding 

estimated PSF using a uniform initial estimate of the PSF. Figures 5.13 (a) and (c) present the 

results obtained using a Gaussian initial estimate of the PSF, and figures 5.13 (b) and (d) 

present the corresponding estimated .PSF using a Gaussian initial estimate of PSF. Figure 

5.14 present the one dimensional cross section of results on defect E. 

The results in all three cases again show that initial estimate of PSF has a big impact on 

the final results. The results obtained using Gaussian initial estimate of PSF are slightly 

better than the results obtained using uniform and random initial estimate of PSF. Compared 

the results obtained by using Fish's method and the method with new convergence criteria, 

we can see that both methods performs well on the calibration data set. Although the method 

with new convergence criteria does not dramatically improve the final results, it offers 

savings in computational time. 
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(a) (b) (c) 

(d) (e) 

(f) (g) 

Figure 5.11 Results on calibration data from defect E, excitation frequency: 300 kHz; (a) 

Raw data; (b) Raw data after 3dB thresholding; (c) True defect profile; .(d) Deconvolved 

defect profile using random initial estimate of PSF (Fish, after 30 R - L iterations); (e) 

Estimated PSF using random initial estimate of PSF (Fish); (f) Deconvolved defect profile 

using random initial estimate of PSF (new convergence criteria, after 26 R- L iterations); (g) 

Estimate PSF using random initial estimate of PSF (new convergence criteria) 
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(a) (b) 

(c) (d) 

Figure 5.12 Results on calibration data from defect E, excitation frequency: 300kHz; (a) 

Deconvolved defect profile using uniform initial estimate of PSF (Fish, after 30 R- L 

iterations); (b) Estimated PSF using uniform initial estimate of PSF (Fish); (c) Deconvolved 

defect profile using uniform initial estimate of PSF (new convergence criteria, after 24 R- L 

iterations); (d) Estimated PSF using uniform initial estimate of PSF (new convergence 

criteria) 
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(a) (b) 

(c) (d) 

Figure 5.13 Results on calibration data from defect E, excitation frequency: 300 kHz; (a) 

Deconvolved defect profile using Gaussian initial estimate of PSF (Fish, after 20 R- L 

iterations); (b) Estimated PSF using Gaussian initial estimate of PSF (Fish); (c) Deconvolved 

defect profile using Gaussian initial estimate of PSF (new convergence criteria, after 16 R 

L iterations); (d) Estimated PSF using Gaussian initial estimate of PSF (new convergence 

criteria) 
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(b) 

Figure 5.14 One climensi~nal cross section of results on defect E. (a) Results obtained using 

uniform initial estimate of PSF; (b) Results obtained using Gaussian initial estimate of PSF. 
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Figures 5.15, 5.16 and 5.17 present the results for calibration data set F for an axial 

defect of length 0.50". The observed raw data is shown in figure 5.15 (a), the data after 3dB 

thresholding is shown in figure 5.15 (b), and the true defect image is shown in figure 5.15 

(c). This raw data was then deconvolved using the Richardson- Lucy algorithm. Figures 

5.15 (d) and (f) present the results obtained using a random initial estimate of the PSF, and 

figures 5.15 (e) and (g) present the corresponding estimated PSF using a random initial 

estimate of the PSF. Figures 5.16 (a) and (c) present the results obtained using a uniform 

initial estimate of the PSF, and figures 5.16 (b) and (d) present the corresponding estimated 

PSF using a uniform initial estimate of the PSF. Figures 5.17 (a) and (c) present the results 

obtained using a Gaussian initial estimate of the PSF, and figures 5.17 (b) and (d) present the 

corresponding estimated PSF using a Gaussian initial estimate of PSF. Figure 5.18 present 

the one dimensional cross section of results on defect F. 

The results in all three cases again show that initial estimate of PSF has a big impact on 

the final results. The results obtained using Gaussian initial estimate of PSF are slightly 

better than the results obtained using uniform and random initial estimate of PSF. Compared 

the results obtained by using Fish's method and the method with new convergence· criteria, 

we can see that both methods performs well on the calibration data set. Although the method 

with new convergence criteria does not dramatically improve the final results, it offers 

savings in computational time. 
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(a) (b) (c) 

(d) (e) 

(f) (g) 

Figure 5.15 Results on calibration data from defect F, excitation frequency: 200kHz; (a) 

Raw data; (b) Raw data after 3dB thresholding; (c) True defect profile; (d) Deconvolved 

defect profile using random initial estimate of PSF (Fish, after 30 R- L iterations); (e) 

Estimated PSF using random initial estimate of PSF (Fish); (f) Deconvolved defect profile 

using random initial estimate of PSF (new convergence criteria, after 24 R- L iterations); (g) 

Estimate PSF using random initial estimate of PSF (new convergence criteria) 
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(a) (b) 

(c) (d) 

Figure 5.16 Results on calibration data from defect F, excitation frequency: 200kHz; (a) 

Deconvolved defect profile using uniform initial estimate of PSF (Fish, after 30 R - L 

iterations); (b) Estimated PSF using uniform initial estimate ofPSF (Fish); (c) Deconvolved 

defect profile using uniform initial estimate of PSF (new convergence criteria, after 24 R - L 

iterations); (d) Estimated PSF using unifo1m initial estimate of PSF (new convergence 

criteria) 
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(a) (b) 

(c) (d) 

Figure 5.17 Results on calibration data from defect F, excitation frequency: 200kHz; (a) 

Deconvolved defect profile using Gaussian initial estimate of PSF (Fish, after 20 R - L 

iterations); (b) Estimated PSF using Gaussian initial estimate of PSF (Fish); (c) Deconvolved 

defect profile using Gaussian ini tial estimate of PSF (new convergence cri teria, after 14 R 

L iterations); (d) Estimated PSF using Gaussian initial estimate of PSF (new convergence 

criteria) 
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Figure 5.18 One dimensional cross section of results on defect F. (a) Results obtained using 

uniform initial estimate of PSF; (b) Results obtained using Gaussian initial estimate of PSF. 
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Results presented so far show that the blind deconvolution method using Richar~son -

Lucy algorithm performs very well for the synthetic data as well as the eddy current data 

obtained from the calibration tube. Results obtained using different initial estimates of the 

point spread function (see table 5.1) show that the initial estimate for PSF has great impact 

on the fmal estimate of the true defect profile. In the case of rotating absolute pancake coil 

probe, choosing a Gaussian function as the initial estimate of the point spread function·yields 

best performance. 

Also worth noting is that the method with new convergence criterion does not 

dramatically improve the final results, but it saves a considerable amount of computing time. 

Therefore, it can successfully lower the level of computational complexity which is very 

critical in steam generator tube inspection in nuclear power plants. 

In order to further evaluate this method, field data obtained from the tubes used in steam 

generators in nuclear power plants were used to test the blind deconvolution method. One 

problem in using field data is that it is hard to compare the results with the true defect 

footprint since knowledge of the true defect footprint is not usually available. The results of 

applying blind deconvolution method on three sets of field data are presented in the 

following section. 

5 .1.3 Results on Field Data 

In this section, three field data sets were used to evaluate the performance of blind 

deconvolution method based on Richardson - Lucy algorithm. The field data were obtain in 

steam generator tube inspection in nuclear power plants using the pancake coil probe of 

diameter 0.0875 inch, and excitation frequencies used were 400kHz, 300kHz, and 200kHz. 



www.manaraa.com

86 

Table 5.1 Comparison of estimate defect surface profile using different 

initial estimate of PSF 

Defect Initial Estimate Method Length of estimate 
ofPSF defect (inch) 

Defect A in Random Fish et al. 's 0.45 

Calibration tube, function New Conv. Crit. 0.44 
excitation 

Uniform 
frequency 400 

Fish et al. 's 0.45 

function New Conv. Crit. 0.45 kHz, length of 

true defect is Gaussian Fish et al. 's 0.51 

0.50" function New Conv. Crit. 0.51 

DefectE in Random Fish et al. 's 0.44 

Calibration tube, ·function New Conv. Crit. 0.43 
excitation 

Uniform Fish et al. 's 0.43 
frequency 300 

function 
kHz, length of New Conv. Crit. 0.44 

true defect is Gaussian Fish et al. 's 0.52 

0.50" function New Conv. Crit. 0.52 

Defect Fin Random Fish et al. 's 0.41 

Calibration tube, function New Conv. Crit. 0.39 
excitation 

Uniform Fish et al. 's 0.43 
frequency 200 

function 
kHz, length of New Conv. Crit. 0.43 

true defect is Gaussian Fish et al. 's 0.53 

0.50" function New Conv. Crit. 0.53 

Note: Fish et al. 's: Fish et al. 's blind deconvolution method; 

New Conv. Crit.: method with new convergence criteria; 

Error 

10,0% 

12.0% 

10.0% 

10.0% 

2% 

2% 

12.0% 

14.0% 

14.0% 

12.0% 

4.0% 

4.0% 

18.0% 

22.0% 

14.0% 

14.0% 

6.0% 

6.0% 
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For each data set, both uniform and Gaussian initial estimates of PSF were use~. In each 

case, both Fish's method and the method with new sub convergence criterion were studied. 

Figures 5.19 and 5.20 presents the results on field data obtained from tube 

DHR009C015I010. The observed raw data is shown in figure 5.19 (a). The data after 3dB 

thresholding is shown in figure 5.19 (b). This raw data was then deconvolved using the 

Richardson - Lucy algorithm. Figures 5.19 (c) and (e) present the results obtained using a 

uniform initial estimate of PSF. Figures 5.19 (d) and (f) present the estimated PSF using a 

uniform initial estimate for PSF. Figures 5.20 (a) and (c) present the results obtained using a 

Gaussian initial estimate of PSF, and figures 5.20 (b) and (d) present the estimated PSF using 

a Gaussian initial estimate of PSF. 

The results in both cases show that initial estimate for PSF has a big impact on the final 

results. The results obtained using Gaussian initial estimate for PSF is better than the results 

obtained using uniform initial estimate for PSF. Comparing the results obtained using Fish's 

method and the method with new convergence criteria, we can see that both methods perform 

well for this field data set. Although the method with new convergence criteria does not 

dramatically improve the final results, it offers savings on computational time. 

Figures 5.21 and 5.22 presents the results on field data obtained from tube 

DHR006C012I010. The observed raw data is shown in figure 5.21 (a). The data after 3dB 

thresholding is shown in figure 5.21 (b). This raw data was then deconvolved using the 

Richardson- Lucy algorithm. Figures 5.21 (c) and (e) present the results obtained using a 

uniform initial estimate of PSF. Figures 5.21 (d) and (f) present the estimated PSF using a 

uniform initial estimate for PSF. Figures 5.22 (a) and (c) present the results obtained using a 



www.manaraa.com

88 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5.19 Results on a defect in tube No: DHR009C015I010, excitation frequ~ncy: 400 

kHz; (a) Raw data; (b) Raw data after 3dB thresholding; (c) Deconvolved defect profile using 

uniform initial estimate of PSF (Fish, after 70 R - L iterations); (d) Estimated PSF using 

uniform initial estimate of PSF (Fish); (e) Deconvolved defect profile using uniform initial 

estimate of PSF (new convergence criteria, after 62 R - L iterations); (f) Estimated PSF using 

uniform initial estimate of PSF (new convergence criteria) 
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(a) (b) 

(c) (d) 

Figure 5.20 Results on a defect in tube No: DHR009C015I010, excitation frequency: 400 

kHz; .(a) Deconvolved defect profile using Gaussian initial estimate of PSF (Fish, after 60 R 

- L iterations); (b) Estimated PSF using Gaussian initial estimate of PSF (Fish); (c) 

Deconvolved defect profile using Gaussian initial estimate of PSF (new convergence criteria, 

after 52 R- L iterations); (d) Estimated PSF using Gaussian initial estimate of PSF (new 

convergence criteria) 
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Gaussian initial estimate of PSF, and figures 5.22 (b) and (d) present the estimated PSF using 

a Gaussian initial estimate ofPSF. 

The results in both cases show that initial estimate for PSF has a big impact on the final 

results. The results obtained using Gaussian initial estimate for PSF is better than the results 

obtained using uniform initial estimate for PSF. Comparing the results obtained using Fish's 

method and the method with new convergence criteria, we can see that both methods perform 

well for this field data set. Although the method with new convergence criteria does not 

dramatically improve the final results, it offers savings on computational time. 

Figures 5.23 and 5.24 presents the results on field data obtained from tube 

DHR014C059I020. The observed raw data is shown in figure 5.23 (a). The data after 3dB 

thresholding is shown in figure 5.23 (b). This raw data was then deconvolved using the 

Richardson - Lucy algorithm. Figures 5.23 (c) and (e) present the results obtained using a 

uniform initial estimate of PSF. Figures 5.23 (d) and (f) present the estimated PSF using a 

uniform initial estimate for PSF. Figures 5.24 (a) and (c) present the results obtained using a 

Gaussian initial estimate of PSF, and figures 5.24 (b) and (d) present the estimated PSF using 

a Gaussian initial estimate of PSF. 

The results in both cases show that initial estimate for PSF has big impact on the final 

results. The results obtained using Gaussian initial estimate for PSF is better than the results 

obtained using uniform initial estimate for PSF. Comparing the results obtained using Fish's 

method and the method with new convergence criteria, we can see that both methods perform 

well for this field data set. Although the method with new convergence criteria does not 

dramatically improve the final results, it offers savings on computational time. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 5.21 Results on a defect in tube No: DHR006C012I010, excitation frequency: 400 

kHz; (a) Raw data; (b) Raw data after 3dB thresholding; (c) Deconvolved defect profile using 

uniform initial estimate of PSF (Fish, after 40 R - L iterations) ; (d) Estimated PSF using 

uniform initial estimate ofPSF (Fish); (e) Deconvolved defect profile using uniform initial 

estimate of PSF (new convergence criteria, after 34 R - L iterations); (f) Estimated PSF using 

uniform initial estimate of PSF (new convergence criteria) 
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(a) (b) 

(c) (d) 

Figure 5.22 Results on a defect in tube No: DHR006C0121010, excitation frequency: 400 

kHz; (a) Deconvolved defect profile using Gaussian initial estimate of PSF (Fish, after 40 R 

- L iterations); (b) Estimated PSF using Gaussian initial estimate of PSF (Fish); (c) 

Deconvolved defect profile using Gaussian initial estimate of PSF (new convergence criteria, 

after 32 R- L iterations); (d) Estimated PSF using Gaussian initial estimate of PSF (new 

convergence criteria) 
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(a) (b 

(c) (d) 

(e) (f) 

Figure 5.23 Results on a defect in tube No: DHR014C059I020, excitation frequency: 300 

kHz; (a) Raw data; (b) Raw data after 3d.B thresholding; (c) Deconvolved defect profile using 

uniform initial estimate of PSF (Fish, after 70 R- L iterations); (d) Estimated PSF using 

uniform initial estimate of PSF (Fish) ; (e) Deconvolved defect profile using uniform initial 

estimate of PSF (new convergence criterla, after 62 R - L iterations); (f) Estimated PSF using 

uniform initial estimate of PSF (new convergence criteria) 
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(a) (b) 

(c) (d) 

Figure 5.24. Results on a defect in tube No: DHR014C059I020, excitation frequency: 300 

kHz; (a) Deconvolved defect profile using Gaussian initial estimate of PSF (Fish, after 40 R 

- L iterations); ·(b) Estimated PSF using Gaussian initial estimate of PSF (Fish); (c) 

Deconvolved defect profile using Gaussian initial estimate of PSF (new convergence criteria, 

after 36 R- L iterations); (d) Estimated PSF using Gaussian initial estimate of PSF (new 

convergence criteria) 
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5.2 Discussion 

The data used to evaluate the blind deconvolution method based on Richardson - Lucy 

algorithm is obtained using rotating pancake probes. These probes operate in absolute mode. 

Another type of commonly used probe is the differential bobbin coil probe. This method does 

not perf9rm well for the data obtained using bobbin coil. Since the Richardson - Lucy 

algorithm models probe impulse response as a probability density function, the probe 

impulse response has to possess the property of nonnegativity (shown in equation (4.6)). 

However the bobbin coil probe operates in differential mode, its response is usually a 

derivative of a Gaussian function. Therefore, the probe response does not satisfy the 

nonnegativity condition .. For data obtained by using bobbin probe, other characterization 

methods, such neural networks, are more suitable. 

5.2.1 Effect of Additive Noise 

The inspection system model used does not take the additive noise into account. And the 

convergence criterion described in equation (4.23) ignores the noise as well. Hence this 

method may fail to converge when the level of additive noise is very high. Figures 5.25 -

5.28 show the results obtained by adding random noise of different SNR to test data set 2 

(rectangle). From the results, it is clear that the method fails to achieve reasonable results 

when noise to signal ratio (NSR) is greater than 15%. 

Although preprocessing techniques are used to remove noise, it is often very difficult to 

achieve a complete noise removal due the lack of knowledge of noise properties. Since the 

noise may be generated due to the vibration of the probe inside the tube, the friction between 
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(a) (b) (c) 

Figure 5.25 Test data set II. (a) True image ; (b) Gaussian PSF; (c) Observed iamge. 

(a) (b) (c) 

Figure 5.26 Results oftest data set II (with 5% noise). (a) Observed image; (b) Deconvolved 

image; (c) Estimated PSF 
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(a) (b) (c) 

Figure 5.27 Results of test data set IT (with 10% noise). (a) Observed image; (b) 

Deconvolved image; (c) Estimated SF 

(a) (b) (c) 

Figure 5.28 Results of test data set II (with 15% noise). (a) Observed image; (b) 

Deconvolved image; (c) Estimated PSF 
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the probe surface and the tube wall, the rust on the tube wall, and other reasons, it is very 

difficult to model the noise, and also it is almost impossible the estimate the statistical 

properties of the noise. Future research work in the area of the noise modeling will be useful. 

If the additive noise can be successfully modeled, then it can be removed more successfully, 

and can therefore dramatically improve the performance of this method. 

5.2.2 Effect of Preprocessing 

The primary objective of preprocessing is to remove the background noise of eddy 

current tube data so that the ROI of data can be obtained. Figure 5.29 and 5.30 show that the 

results of preprocessing for calibration data. 

The results shows that the preprocessing can successfully remove background noise in 

the eddy current tube data while retain the information contained in the data. 

5.2.3 Effect of Gaussian PSF 

Blind deconvolution method based on Richardson - Lucy algorithm is sensitive to the 

initial estimate of PSF. Among three different initial estimates of PSF, Gaussian function 

performs best. And Gaussian functions with different a value show almost the same results. 

Figure 5.31 - 5.34 present results on synthetic data using Gaussian functions with different 

a value as the initial estimate of PSF. The "smearing" Gaussian PSF has a value of 2. 
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(a) (b) 

(c) (d) 

(e) 

Figure 5.29 Results of Preprocessing on calibration data from defect A, excitation 

frequency 400kHz. (a) raw data; (b) raw data after 3db thresholding; 

(c) data after preprocessing; (d) preprocessed data after 3db thresholding; 

(e) deconvolved defect profile 
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(a) (b) 

(c) (d) 

(e) 

Figure 5.30 Results of Preprocessing on calibration data from defect E, excitation 

frequency 300kHz. (a) raw data; (b) raw data after 3db thresholding; 

(c) data after preprocessing; (d) preprocessed data after 3db thresholding; 

(e) deconvolved defect profile 
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(a) (b) 

Figure 5.31 Results on synthetic data set I using Gaussian initial estimate of PSF, 0' = 3. 

(a) Deconvolved image; (b) Estimated PSF; 

(a) (b) 

Figure 5.32 Results on synthetic data set I using Gaussian initial estimate of PSF, 0'= 4. 

(a) Deconvolved image; (b) Estimated PSF; 
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(a) (b) 

Figure 5.33 Results on synthetic data set I using Gaussian initial estimate of PSF, a= 6. 

(a) Deconvolved image; (b) Estimated PSF; 

(a) (b) 

Figure 5.34 Results on synthetic data set I using Gaussian initial estimate of PSF, a= 8. 

(a) Deconvolved image; (b) Estimated PSF; 
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5.3 Conclusion 

The eddy current inspection problem is modeled as an image degradation system under 

the assumption that the observed eddy current data is the convolution of the true defect 

footprint and the probe impulse response. This makes it possible to apply blind 

deconvolution algorithms for signal restoration. Due to the nature of eddy current inspection 

process and the existence of additive noise, specific preprocessing steps for calibrating 

original data and removing noise are necessary. Since the scanning speed of rotating probe is 

not constant during the whole scanning process, another assumption made is that the probe 

impulse response remains unchanged in a local area in order to use the blind deconvolution 

algorithm. Iterative blind deconvolution method based on Richardson - Lucy algorithm was 

used in this application due to its properties of fast convergence and reasonable robustness. 

Initial results obtained show that blind deconvolution method based on Richardson - Lucy 

algorithm is capable of estimating the true defect footprint from eddy current data. 

One major advantage of blind deconvolution method using Richardson - Lucy algorithm 

is that it converges very fast in comparison to other blind deconvolution methods. For all test 

data, results were obtained after a few iterations, typically after 3 to 8 iterations depending on 

the choice of the initial estimate for the probe PSF. The speed of convergence can be further 

improved by using the modified blind deconvolution method. This property is very important 

for steam generator tube inspection in nuclear power plant because of the large number of 

tubes to be inspected in a short period of time. 

Besides fast convergence, the blind deconvolution method using Richardson - Lucy 

algorithm is also relatively robust. In the case where the additive noise level is low, the 

method performs very well. But at high noise levels, the method fails. Due to this problem, 
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when applying this method to eddy current data, preprocessing is necessary to get rid of a 

certain level of noise so that the blind deconvolution method can perform well. 

Another issue that is worth mentioning is that the iterative blind deconvolution method is 

sensitive to the initial estimate of the true defect footprint and probe response. In the case that 

the true defect footprint and probe response are unknown, since for absolute pancake probe, 

response has the form of a Gauss~an function, it is appropriate to use a 2 - dimensional 

Gaussian function as the initial estimate of the probe response. Comparison of the results 

obtained using data with both uniform and Gaussian function as the initial estimate of probe 

response show that the results obtained in the latter case are better. Another advantage of 

using data with Gaussian function as the initial estimate is that the method converges faster 

than with uniform function as the initial estimate. Considering the large number of tubes to 

be inspected in a practical application, this can greatly enhance the speed, reduce the cost, 

and improve the quality of service. 

5.4 Future Research 

The blind deconvolution method based on Richardson - Lucy algorithm is sensitive to 

. the initial estimate of the defect footprint and probe response. Since no knowledge of defect 

footprint is available a priori, using a uniform distribution function is a reasonable solution. 

When choosing the initial estimate of probe response, a Gaussian distribution function is 

more suitable to model the probe response. Although the parameters of the Gaussian 

distribution can be estimated roughly from the sampling rate, the method can perform even 

better if the initial estimate of the probe response can be more accurate. This brings a 

possible future research area, namely probe response modeling using finite element model. fu 
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the finite element model, all the information including lift off, geometry of the probe, 

conductivity and penpeability of the material of the tube and coil, and the current density can 

be incorporated into the estimation process, thus more accurate estimate of the probe PSF can 

be achieved. 
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